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ELECTRONIC WAVE FUNCTIONS

VI. SOME THEOREMS FACILITATING THE EVALUATION OF
SCHRODINGER INTEGRALS OF VECTOR-COUPLED FUNCTIONS

By S. F. BOYS, Theoretical Chemistry Department, University of Cambridge

(Communicated by Sir John Lennard-Jones, F.R.S.—Received 8 December 1951)
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The theorems reported here provide some powerful additional relations to the general theory of
the reduction of Schrédinger integrals completed in part V. One result of these is to establish
a number of relations between the various vector-coupling coefficients and thus to reduce con-
siderably the labour of calculation of these. A second result is to provide a method of evaluating
the two-electron electrostatic integrals which is a complete alternative to the ¢* method which has
generally been used previously. This appears to be simpler and more powerful. A third result is only
applicable to a restricted class of integrals and only to particular terms in the formulas for these,
but where applicable it makes trivial the evaluation of the terms concerned and actually simplifies
about three-quarters of the integrals normally occurring. These methods have been found to be
extremely useful in the convergent variational calculations of atomic wave functions, and will also
be applicable to all problems which require the evaluation of Schrédinger integrals between
vector-coupled functions.
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1. INTRODUCTION

This series of investigations is being made in accordance with the opinion that the con-
vergent variational calculation of wave functions of atoms and molecules can be performed

/ |\
A B

~ much more simply than is generally realized. The numerical calculations which have
§ > already been completed and will be reported later amply justify this view for the case of
@) : atoms. When allowance is made for the increased accuracy, the calculations appear to be
ESG proportionately shorter than non-convergent calculations. However, these calculations
O would be prohibitively laborious for all atoms more complicated than boron without a small
= number of mathematical relations, whose justification is extremely involved, although their

use is much simpler. These relations are purely mathematical identities and not particular
to any atom or physical picture. A general scheme of these relations sufficient for any
problem was completed in part V, but if these are supplemented with a few others which
are more particular, but still applicable to all atoms, the labour of evaluating the Schrs-
dinger integrals is reduced to less than a quarter of what it would be otherwise. It is these
more particular relations which will be derived here. It is unfortunate that the exposition
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96 S. F. BOYS ON

of these increases the amount of theory before the practical application, but these methods
both decrease the actual labour and simplify very much the description of the calculation
for any particular atom. It may be noted that the theory which has been, and is being,
developed is not specialized in parts to particular types of atoms; all the theory is used for
any single atom, unless this is sufficiently simple, as for the beryllium atom (part II), to be
performed without the theory. The subsequent atoms only use the same general theory
applied to different integrals.

The simplest relations which will be derived here are those relating to various vector-
coupling coefficients. A number of such coefficients were defined in the general theory, and
it was suggested that the values of these should be calculated and tabulated. The same
coeflicients will be used repeatedly in calculations for different atoms. It will be shown that
there are several very simple relations between the values of any one coefficient with
different arguments, and between different coefficients. These relations both reduce the
necessary numerical calculation and serve as checks. The following examples expressed in
the original notations, which will be repeated below, illustrate this type of relation:

X(L, M, a,b,m) = (— 1)L X(L, — M, a,b, — M+m), (1)
ab bacd\.
W( L K) U( figs )12<d—b-L>. (2)

Some such relations of X and U coefficients will be derived in § 3, of I/ and W in § 4, and of
Vin § 6. One or two of these relations, such as equation (1), are effectively already known,
but most are new.

Probably the most important relations in this paper are those of §5, which provide a
method of evaluating the two-electron integrals previously denoted by

[1’12/7'12 ” XpXg ' xtxu]LS' (3)

"The only method known previously which is equivalent to this is the ¢* method (see Condon
& Shortley 1935, p. 174). The new method appears to be simpler and more fundamental
and is much more appropriate in the present formulation.

The final method which is worked out is only a short way of evaluating certain terms of
Schrodinger integrals for which the general theory has already been given. It expresses the
integrals concerned in a form

(Y |H|¥') = (¢ |inv | ¥') (a constant) +other terms. | (4)

The invariant portion (¢ |inv | ') has the significance that it is sufficiently simple to be
written down by a memorized rule and at the same time it contains the greater part of the
total integral. The general theory is still required for the residual terms, but frequently
need only be applied to a lower-order problem. The method does not apply to all integrals,
but its value for the approximate three-quarters to which it does apply is considerable.
No equivalent relation of this generality has previously been known, although the equi-
valent of applying this to some simple and specialized integrals is described in Condon &
Shortley (1935, p. 177). The necessary theorems will be derived in a form in which they are
applicable to some molecular problems.
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ELECTRONIC WAVE FUNCTIONS. VI 97

It is necessary to carry out most of the present analysis in the very general notations
introduced previously, and this will be reviewed in §2, together with some other con-
venient abbreviations.

2. NOTATION AND NOMENCLATURE

A set of functions ¢(m) with m = —I, —I[+1, ..., [ will, as previously, be called a con-
nected set of eigangs when they satisfy the usual relations
(L,+iL,) g(m) = J[(I—m) (I+m+1)] (m-+1), etc., (5)

for a given set of angular operators L,, L,, L,.
If ¢(m,, m,) is a doubly-connected set of eigangs under the sets of operators L; and L,,
then the notations ‘

¢0(L’M,1a2) or ¢0%M:2¢(m’M_m)X(L3Mallalz,m) (6)

will be used. The X’s are coefficients with a formal definition chosen to make ¢0{4! a con-
nected set under the operators (L;+L,). Considerable liberty will be taken with the
suffixes of the type 12 which serve to indicate the m suffixes or arguments of the ¢ which are
to be coupled. If these are otherwise obvious, they will be omitted. In complicated cases
any symbols obviously related to the suffixes to be coupled will be used. This fundamental
operation will generally be designated as the vector coupling of m; and m,.

The spectroscopic notations 'S, 3S, 1P, etc., each specify an / and s value according to the
code [ =0,1,2, for S, P, D, etc., and the suffix has value 2s+1. It is convenient to use
a modified form of this in which the 25+ 1 suffix is written after the letter to designate a
double coupling M4V of two doubly-connected sets of eigangs of orbital and spin angular
operators L and S. If necessary, the M and Uvalues will be written as in D3(M, U), but they
can generally be omitted. The later position of the suffix is very convenient, since it avoids
the necessity for brackets in such cases as ¢?D! and in more complicated cases.

The coefficients X, U, W, V will be used as in previous parts, but will be effectively
redefined when used. For the sake of compactness the following alternative forms of
representation will be used where convenient:

w5 gef) = Wabledlef),|
abcd
U( €f )=U(d,b,(),d|€,f), ; (7)
a d
V(b cef) — V(a,b|c|d,e|f).
The notation P(x;,%y, ... | ¥15¥s --.) will be used to denote the operation of replacing

x, by y,, %, by y,, etc. The notations d(x,y) and (%, %y, ... | 1, ¥, -..) will be used to denote
unity when x = y and x; = y, respectively, and otherwise zero. The notation

qt(xl’ Ky - ‘/yls Yo -- )
will denote some quantity dependent on the x; but independent of the y;. ¢(x) will denote
i2, which is thus (—1)* when x is integral. f* will denote the conjugate complex of f; but
Fwill always be defined explicitly, except in the case of a connected set of eigangs, when
a(m) = o(m) a*(—m). (8)

12-2
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#; will denote a set of variables x;, y;, z;, v;, where x,, y,, z; are ordinary spatial variables but
v; is the spin variable which can only assume two values.

The result of the complete integration summation operation f*Qg will be denoted as
usual by (f] Q| g). As introduced previously, the notations

(@|g) o @IFG) (9

will be used when F and G are functions of the corresponding sets of variables # and £,
and where  is some operator which removes corresponding pairs , #; to mean the removal

of all remaining ¢, # by fdtiP(t; | ¢) operators. The same notations will be used when the

elementary sets are just x, y, z or v.

3. SOME PROPERTIES OF THE X COEFFICIENTS

The relations derived in this section are of the first type described above. In this case the
most important results are already known, but they have been re-derived in accordance
with the present scheme of analysis for the sake of completeness. The justification from other
formal treatments would be nearly as complicated.

The X vector-coupling coeflicients were defined by a minimum necessary set of conditions
in part IV and then were shown to satisfy some corresponding symmetric relations. It is
convenient to state this complete set, containing the definition, as a theorem without proof.
It is effectively justified by theorem 8, part ITI. The subsequent theorems follow by detailed
analysis of this.

TurorEM 1. The coefficients X (L, M,m), or X(L, M,a,b,m) for the conventional vector
coupling of eigangs with first values ¢ and b satisfy

X(a+bya+b,a) =1, 3 X(L,M,m)X(L',M',m)=8L,M|L,M), (10)
N-(L,M)X(L,M—1,m) = N~(a,m+1) X(L, M,m~+1)+N~(b, M—m) X(L, M,m), (11)
N+(L,M) X(L,M+1,m) = N*(a,m—1) X(L, M,m—1)+ N*(b, M—m) X(L, M,m), (12)

ng(Lqu,L,m) X(L,L,m)>0, (13)
N-(L,M)=N"(L,M—1)=N*(L, —M) = N-(L, —M+1)
= J[(L+M)(L-M+1)]. (14)

These relations are still valid when some X coeflicients are non-existent if these are regarded
as zero.

THEOREM 2. X(L,L,a,b,m) = o(a—m) | X(L,L,a,b,m)|. (15)
Proof. Ifrelation (12) is examined for the case M = L the left-hand side is zero, and hence
X(L,M,m—1) =—X(L, M,m) N*(b, M—m)/N+*(a,m—1), (16)

so that X(L,L,m)]| X(L,L,ym) | = o(a—m) ky, (17)

where k=X, La)| X(L,L,a)|. (18)
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ELECTRONIC WAVE FUNCTIONS. VI 99

If A(¢,) and B(z,) denote two connected sets of eigangs of the operators L, and L, respec-
tively with first values @ and 4, then it follows from relation (13) that

0<3>mX(L+1,L m) X(L,Lm) N~(L+1,L+1)

— (ABOL+LE| L, | ABOBE) N-(L+1,L+1)
= ({L7 + L3} ABO** 14| Ly, | ABORT)
~ (ABOYb2t |~ Lf 1Ly, (Li + L) | ABO™)

1
_ S X(L4+1,L4+1,m) X(L, L,m—1) N*(Lm—1)
S | X(LA1, L1, m) || X(L, L m—1) | N*(Lym—1) kg . (19)

The first equalities are obtained by trivial changes of form, and the last follows by use of

relation (18). Hence
kp=1/kp s =k =Koy = 1, (20)

and substitution in (17) gives the theorem.
TueorREM 3.  X(L, M, a,b,m) = c(a+b—L) X(L, — M, a,b, —m), (21)
X(L,M,b,a, M—m) = o(a+b—L) X(L, M,a,b,m). (22)
Proof. Tt is simplest to show immediately that all the X(Z, M, m) with the lowest per-
missible m values, for a given L but different M values, have the same sign. Let X(L, M, m’)

and X(L, M +1,m") be such coeflicients. Then it is only possible for m" = m’ or m” = m’ +1.
When m” = m’ it follows by equation (12) that

N*(L, M) X(L, M+1,m') = N*(b, M—m") X(L, M, m"), (23)

since X(L, M, m"”—1) does not exist when m” is the lowest term. Hence the two lowest terms
have the same sign. When m” = m’ +1 it follows by equation (11) that

N-(L,M+1) X(L, M,m") = N~(a,m"+1) X(L,M+1,m +1), (24)

since X(L, M+1,m’) does not exist, since m’+1 is the lowest term. Hence the two lowest
coefficients always have the same sign. Consider the two lowest coefficients X(Z, L, L—b)
and X(L, — L, —a). It follows from theorem 2 that the sign of the first is 0(¢+54—L), and

this must also be the sign of the second.
Let Y(M, m) be defined by

ola+b—L) Y(Mym) = X(L, —M, —m), (25)
so that Y(L, a) is positive and '
0 = N*(a, —m—1) Y(L, —m—1)+N*(b, L+m) ¥(L, —m) (26)

follows from equation (11) by replacing N~ quantities by the N* quantities. Ifm’ is written
for —m in this last relation these conditions with

2 Y(L,m) =1 (27)
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determine the Y(L,m) and are exactly the same as the conditions for X(L, L, m) obtained

in theorem 2. Hence
X(L,L,m) = Y(L,m). (28)

Exactly similarly the equation found to derive the Y (M, m) from Y(L,m) can be shown to
be the same as the equation deriving the X(L, M, m) from X(L, L, m) and so generally
X(L,M,m) =Y(L,m). (29)

By the definition of the ¥ coefficients this is the first assertion of the theorem. The second
assertion has already been established in theorem 7, part V, but is included for completeness.

THEOREM 4. X(0,0,a,a,m) = o(a—m)//(2a+1). (30)
Proof. 1t follows by putting L = M = 0 in equation (12) that
0= N*(a,m—1) X(0,0,m—1)+N*(a, —m) X(0,0,m), (31)
and since N*(a,m—1) = N*(a, —m),

that all these coefficients have the same absolute magnitude.
The signs stated in the theorem follow from theorem 2, and the absolute magnitudes
stated are required to satisfy the normalization relation.

4. PrROPERTIES OF U AND W COEFFICIENTS

It will be shown that the U and W coeflicients, which were defined to be the coefficients
of two very useful transformations, are closely related. This does not avoid the necessity of
tabulating these separately, since they are used in circumstances in which it would be
troublesome to have to perform trivial numerical transformations. However, the relation
is useful either for evaluation or for checking numerical values. The symmetry properties
of the U and W can conveniently be obtained in conjunction with this analysis, and these
reduce the necessary tables to about a quarter of the length otherwise required.

It is convenient to establish first a fairly obvious property of multiple vector coupling,
but which is applicable to such a wide range of circumstances that it is convenient to be
able to use it without repeated explanation. This property is the completeness of what
have been called progressive systems of vector-coupled functions. A formal definition of
these was given in part V, but the intuitive construction of such systems is probably simpler
than this. Let ¢(m,;, m,,...) be a multiply-connected set of eigangs and let vector-coupled
eigangs be formed by coupling the (@,;)th and the (a,)th suffixes to give a suffix designated
as m,,,. Let there be an arbitrary number of repetitions of such couplings to give m,_,,
M, .9, ..., €tC., either the original suffixes or any of the newly generated suffixes being coupled.
Then the system of functionsformed by including all /,, ;, 7,5, ... and all uncoupled m values
is a progressive system. The final functions are only linear combinations of the original
@(my,my, ...), and it is convenient to use a symbolic operator

0Ly lyy oo | iy @yy a9 | Lo assay ] ...),  etc.,

to designate such a linear combination. This is a generalization of the ¢ for a single vector
coupling. The theorem which is required shows the completeness of such systems and the
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ELECTRONIC WAVE FUNCTIONS. VI 101

invariance of the generalized U coeflicients for expressing functions of one such system in
terms of the functions of another system.

THEOREM 5. A progressive system of vector-coupled multiple eigangs is a complete
orthonormal system of functions. The summation operators of one progressive system of
vector coupling can be expressed as linear combinations of the operators of any other
system by

0Ly Ly, ... , a, P15 ¢4 , b pas 92 l 6 P03 43 | lL’ M,p,, q,)
= 2 ﬁ(ll,lm'-'-|A,PlaQ1|BaP23Q2I‘“)

4,B,C, ...

X U(ly, Ly, ... |“>P1: 71 | b,P2>92| 14, Py, @y HB’PZ’ Q. | e),  (32)
where

U(Zlalm ,aaplaql , ”A,Pb QI | ) = U(llalza ,A:PI Ql , laubl:ql I )
= [¢0(a,p1, 01| ) | 0(4, P, Qy | ...)] = qi(/M).  (33)

The U coefficients are unique and serve for the reciprocal expansion. The theorem is also
valid ifa number of suffixes L,, M, L,, M,, ... are left uncoupled and if L, M is taken to mean
this set.

Proof. Consider any multiply-connected set of eigangs ¢(m,, m,, ...,m) with first eigang
values [, l,, .... If ¢’ denote the vector-coupled eigangs ¢0(L, M, p,, ;) including all possible
values of L, then any term of the original ¢ can be expressed in terms of the ¢’ by

$(my, ...,mpy,my, ...) = %X(L, My My Ly by my) GO(Ly my,-+mys Py, qy)- (34)

However, any member of ¢’ can similarly be expressed as a linear combination of ¢” formed
by applying a further vector coupling, and by repetitions of this argument any member
of ¢ can be expressed as linear combinations of any complete set formed by repeated vector
couplings. Since a second progressive set can be expressed in terms of the ¢(m;, m,, ...) it
can also be expressed as a linear combination of the first progressive system. |

In the second place, it is apparent that any two different members of one progressive
system are orthogonal, since they must differ by some / or m value and there is thus a corre-
sponding L operator for which they will have different eigenvalues. The functions are
normal, since vector coupling of normal eigangs always gives normal eigangs (theorem 8,
part IV).

If a function f can be expressed as a linear combination of orthonormal functions g,,
then the unknown coefficients can be evaluated by multiplication by g¥ and integration

o give f=3sle 1N | (35)

If the functions ¢0(...|a,p,,q,]|...) are written for f and another progressive system
$0(... |4, P, @, | ...) for g,, the relation of the theorem follows. The coefficients satisfy
(g,1/,) = (f;|g), since all the X coupling coefficients are real. The possibility of writing
the identity in terms of the operators and of the uniqueness of the coefficient follows im-
mediately by use of theorem 7, part IV, where the total coeflicients of any particular non-
degenerate eigenfunction in a null quantity was shown to be zero.
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102 S. F. BOYS ON
TrEOREM 6. If the elementary U coefficients are defined, as in part V, to satisfy
beL

G, 05M — 3 01, 65MU(a ) 36
b ? ve Vaf of (36)

the values of the only existing coeflicients for L = 0 are given by
o(* be ) =1 (37)

ca

Proof. In the case L = 0 the only possible value for ¢ is ¢, since this must be coupled with
¢ to give 0, and similarly the only possible value for fis a. Hence there is only one coefficient
and one term in the f expansion. When the operators are applied to a given ¢(m,, m,, m,)
the coeflicient of any given ¢(m,, m,, m;) must be the same on each side of the equation and
the implication of this for the particular term ¢(a, ¢ —a, —¢) will be examined. The left-hand
coefficient is

X(c,¢,a,0,a) X(0,0,¢,¢,¢), (38)
both factors of which are positive by theorem 2. The right-hand side coefficient is
U(a,b,c,0,c,a) X(0,0,a,a,a) X(a, —a,b,¢c,c—a). (39)

The first X is positive by theorem 2, and the second X is similarly seen to be positive if it is
replaced by theorem 3, giving

X(a, —a,b,¢,c—a) = X(a,a,c,b,c). (40)
Hence the U coeflicient must be positive and the value +1 follows, since the magnitude

unity is required in order that both progressively coupled functions are normalized in
accordance with theorem 5.

TurEOREM 7. The U coupling coefficients satisfy

abed dcba cbad
U( ef)zU( ef)zU(fe )’ (41)
thus, in general, giving eight equal coefficients, and also
Oup 0208, ca = S 04.8%8320aU (", 1) old~f~a). (42)
f .

Proof. If 4, B, C, D denote connected sets of eigangs with first eigang values a, b, ¢, d, and
are functions of different variables which do not change, it follows that

(DCBAGe 65,09 | DCBABL, 0%,6%9) (43)
— (ABCDUe,, 05,09 | ABCDO},05,0%) (44)
= (ABCDO5075 03, cp | ABCDOL 05 ,03) (45)
= (ABCD®%302,0% | ABCD0404,.0%9) (46)
= (ABCOe, 04 | ABCO4,09%) ' - (47)
= Ulabed | ef ) (48)
= (ABCDO5 02103, cp | ABCDOL:04505%, 5c) 0(f+a—d) (49)

— (CBAGy, 03 | CBAOL, 041). (50)
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The first equality follows from a consideration of the repeated application of theorem 3
to any set of eigangs 4, B, ... coupled to a final L value, when it is obvious that the function
with all couplings reversed is ¢(L—a—b—...) times the original independently of inter-
mediate couplings. The two equal changes within the integral thus cancel. The second and
third equalities are obtained by changes of order of coupling and relations of the type
U(abc0|ca) = 1. The fourth equality follows by elementary considerations, or explicitly
by theorem 9, part IV, and the identity of the resulting expression with the U coefficient
results from the definition and theorem 5. The alternative expression (49) is obtained from
a trivial alteration of the coupling in (45), and (50) follows from the complete reversal of
coupling in (47) by the above rule.

Expressions (43) and (45) differ by complete reversal of order of 4, b, ¢,d, and (47) and
(50) by a reversal of a, b,c. Hence these changes give U coeflicients with equal values and
establish the first part of the theorem. The equality of expressions (48) and (49) in con-
junction with theorem 5 establish the second identity.

Tueorem 8. If the W coefficients are defined, as in part I'V, to satisfy
A* B*\ 0 ,,(L, M) ) (Z E) 0,0 (L, M)
(e D)o an =2 w(; o) 7%, (L, )’ (51)

where F is some integral operator satlsfylng

(D )
F(g D) 700y = 3L L) 300, 1) gu( /)
then W(az,LL) U(b ‘”d) (d—b—1) J(gﬁi;) (53)

Proof. It is possible to express the first form of coupled F integral in terms of the second
form by means of the following succession of changes, so that the resultant coefficients can
be equated to the W coeflicients

(e D) e o)y (54
- e Py (e o) e (55)
- f(glflﬂz) b)ZF (CD Zgbﬁgc wu (bz%d) (56)
N

Il

S o(d—b—1) A/(%H)F(ég) g%%MU(B i%D) . (58)
Expression (54) was obtained by theorem 3 giving
GBI — o(M) Sa( —m) b(—M-+m) X(L, M, a, b, m)
= g(M)Za(—m)b(—M-+m) X(L, —M,b,a, —M+m)
= (M) abdL, ™, (59)

Vor. 245. A. 13
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and then by dividing by (2L + 1) and summing over M, since the integral is independent of
M. Expression (55) was obtained by the explicit formulafor X(0, 0, L, L, M). Expression (56)
follows from the special change of coupling of theorem 7, and expression (57) from the
expansion of the last coupling with values of X(0,0, L, L, M). Expression (58) results from
the independence of the integral on M and by the replacement ¢(— M) LM = G*LM,
The comparison of this last expansion with the W coefficient expansion gives the values
stated in the theorem.

THEOREM 9. The values of W coefficients with symmetrically altered arguments are
given by

W(Z Z ¢ f) - W(Z’ Z ¢ f) o(2d—25b), (60)
W(Z‘; ef) - W(f Z ef) o(atb—c—d). (61)

Proof. These results follow trivially by the expression of the W in terms of the U coeffi-
cients, the change of order of the arguments of this by theorem 7 and the re-expression of
the result in terms of the W coefficient.

THEOREM 10.

01590159 <t
SW(L ges )= w (] 2g) (~1)s = dleg). (63)

Proof. The first identity follows directly from the expansion of #2, %M in terms of the alter-
native couplings and the re-expansion of these back in terms of the original type of couplings.
The second identity is obtained by replacing the U coeflicients by their W equivalents
by theorem 8.

CoMMENT. The theorems derived above are very useful for reducing the preliminary work
for the calculation of Schrodinger integrals. However, their theoretical significance is not
great, and the results are much more important than the methods of proof.

5. THE EVALUATION OF THE FUNDAMENTAL TWO-ELECTRON INTEGRALS

In the general method for the reduction of all integrals of the operator ¥ 1/r,; given in
i>j

part V, the reduction was considered complete when the integrals had been expressed in
terms of two-electron integrals of the form

[D1a/r12 1%, 25 | 22,155 = [ p1of712 1%,(2) 2,(87) F,(25) %,(t5) ] OLSMU GELSMU, (64)

where p,, denotes either 1 or P(¢,,|#,4). These integrals could be evaluated by the
expansions of the § summations followed by the evaluation of each term of the type

[ (myy uy) a3 (Mg 5) | 1/r15 | 25(mg, ug) 2,(my, uy)] (65)

by the well-known procedure using the ¢*(/, m,!’,m’) tables (see Condon & Shortley 19335,
p. 174). However, this is very laborious, and it will be shown below that the unexpanded
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ELECTRONIC WAVE FUNCTIONS. VI 105

integrals can be evaluated directly and are actually simpler and more fundamental quan-
tities than the particular terms of such an expansion. This evaluation does not depend on
the ¢* tables, which are not required for any part of the present scheme of analysis. The
first results will be expressed in terms of some coefficients denoted by @* and QX which
can be calculated very simply, without summations, from the X and W coefficients. These
are the actual coefficients in the expansions of the above integrals in terms of integrals
depending only on the radial functions. These results are obtained by the following detailed
theorems, some of which will be of value for other topics.

It will be convenient to use notations such as

[GIZ “ Xy Xs l xt'xu]L and [GIZ “xrxs l xtxu]s (66)

exactly as in equation (64), but with the couplings confined respectively to the L or .S com-
ponents instead of both L and S as in the original case. The integration operation may be
different in different cases but will correspond just to the variables of which the x,, etc.,
are functions.

To avoid repetition of the well-known properties of spherical harmonics and spin
functions two theorems will now be quoted without proof. If necessary, the effective
justification of these can be found in Condon & Shortly (1935, pp. 54 and 50 respectively).

THeOREM 11. Let s,(v,v") with @ = x,y, z denote the matrices

Sy 5, s,
S oy =3 vy —%
-3 ¥ 0 —z 3t 0 -z 0 =3 (67)
Let s, denote the operators 5, =2 5,(v,0") P(v]|v") (68)
<

acting on functions of v; and s,, the corresponding operators acting on functions of ;. Then
a set 8 constitutes a set of angular operators and the functions g (v) and p_,(v), or « and £
as they are usually denoted, defined by

a(3) =p(—3) =1, a(—%) =4pEF) =0 (69)
form a connected set of eigangs of s with first eigang value s = {.

ComMENT. A trivial algebraic proof is sufficient, but is not really significant, since the
s,(v,v") were effectively constructed to give just this property.

TueoreM 12. Let the spherical harmonics $(0, ¢) be defined for integral values of / and
m with [>=|m | by :
i =eim¢(_1)1J((21+1) ({4m) !)L 1 di-m
J(2m) 2(l—m)! 24!'sin™ @ d(cos f)-—™
Then $ constitute a connected set of eigangs of the angular operators L = (—i) ra(d/dr)
with eigang values /,m, and there are no functions of §, ¢ other than numerical multiples
of these which are eigangs of L. It also follows that

SIM — {2M (§L, ~M)* (71)
these latter being the quantities which according to the earlier notation could be denoted
as SLM,

sin 2. (70)

13-2
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ComMMmENT. In atomic wave-function calculations of the type under consideration all the
actual single-electron functions used will be of the type Aay, where 4 denotes a function of
the radial variable 7, 4 a spherical harmonic and x one of the above spin eigangs. It could
be proved that all connected sets of eigangs L and S are of this type, but this is not necessary
for the present argument. The following theorems will contribute to the evaluation of the
required integrals when the #,, etc., are of the types Aau, Bbu, etc. This will be performed by
considering the integral operators with respect to the 7 and v variables separately, since it
is obvious that the complete integral is just a product of two such integrals.

THEOREM 13. The following integrals exist only for § = 0, or 1, and have the values

[l e | ]S = —28(S, 0), [Py ll g | ]S = —1, (72)
where P, = P(i}, 15| t3, 8,).
Proof. The following values follow directly from the definitions of the X coefficients
X(L,1,4,3,1) =1, X(0,0,%,%, —4) =—1//2, }

(73)
X(l 0’ 2 %’ 2) X<1 09 2 2’ —'%) :X<0’0,%‘:%’%) = 1/\//2

The insertion of these in the full expansion of the integrals gives the values in the theorem.
TurEOREM 14. If ¢ and b denote connected sets of spherical harmonics, then
a(b, ¢) b(6, §) =M = SIM(§, ) X(L, 0, L,, L,, 0) J[(2L,+1) (2L, +1)/4m(2L+1)]
=0 if (L,+L,—L)isodd. (74)
Proof. It is apparent that

Lia(01,4,) b(0,, 41) 0"
= L, P(0y, 45101, 81) a(01, 1) b(05, §) O*
= POy §5 |01, $1) (Li+1Ly) a(0y, 1) 6(0y, 65) 0%, (75)

and hence by taking P(f,,4,|0,,$,) for the operator K in theorem 10, part IV, it follows
that abf™* are a connected set of eigangs of L with eigang values L, M. Hence by theorem 12
these must be a multiple of the $%4. The numerical coeflicient can be obtained by con-
sidering the ratio of the values of these functions at the point § = ¢ = 0. Let a;, b,, S5
denote the values at this point. Since cos ¢ = 1 it follows for positive M that

. L 2L—M)ten \_,
SLM(0, 0) (—1) J((2L+l>(L+M)!)2L!
dLM

[(1+x)*M1(1——— )M L= 7 (L+%)F (1—x) :L .
= [(LI/M!) (— 1)1 (1 —x)*M (1 +x) ¥~ 4 higher powers of (x—1)],,
=0 when M>0
= (—1)LL2Y when M = 0. (76)
The values for negative M will similarly be zero by theorem 12, and it follows that
$§M1(0,0) = 0(M, 0) J[(2L+1)/4n], (77)
and  ab0™M[S™M = ayb,0m°/S§0 = J[(2L,+1) (2L, +1) /4m(2L+1)] X(L,0,L,, L,,0), (78)
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ELECTRONIC WAVE FUNCTIONS. VI 107

as stated in the theorem. The result when (L,+ L, — L) is odd follows immediately from the
symmetry properties of the X coefficients, since X(L, 0, L,, L,, 0) is equal to minus itself in
this case and the result thus vanishes.

THEOREM 15. ‘
[1/r1,]| AaBb | CeDd)- = JL, J5,[A*B | C* D], (79)

where Tty = X(L,0,L, L,,0) J[2L,+1) (2L, +1)]/(2L+1)
—0 if (L,4L,—L) is odd, (80)
and L/ | g1 = [ [dndra /i) () {1y s (1)
where {ri, o}t =ri+2rk~1 for ry>r (82)
= rEk*2/rf-1 for 1 >7,. '

Proof. It is necessary to assume the well-known expansion
1/r1, :L,EM[47T/ (2L+1)] [S*M(0,, $1)]* S*4(03, §5) 71> 723" /i1, (83)
By the introduction of the J’s defined above into the preceding theorem, it follows that
a(0,$) b(0, ) "M = S¥M(0, 8) S [(2LA4-1) [47],
o(0,8) d(0, ) G*1 = [S"(6, §)1* JZ V[ (2L+1) /4] (84)

From the definition of the (|| ) operation and the execution of the P(¢' |f) operations it
thus follows

[1/ry, | AaBb | CeDd]*

:f. ..J‘dr1 dryd(cos 0,) d(cos 8,) dg, dg,{A* (r,) B(r,) C*(ry) D(r,) 1373

X S0y, §1) [S"M(05 ) 1* T3y Jeal (2LA4-1) [4m] 115} (85)

The insertion of the expansion for 1/r;, and the orthonormality of the $*¥ thus gives the
value stated in the theorem, the zero result occurring as in the preceding theorem.

TrEOREM 16. If @, b, ¢ and d denote sets of functions of » which are connected sets of
eigangs of L, and if G}, denotes the selective form of a Hermitian operator which commutes
with L, +L,, then
L, L

[Gia2p12 || AaBb | CeDd]E= 3, W(L Lb LK) (— 1)LLK G,y 1, Py || AaDd | CeBb]X. (86)
K d ¢

Proof. Tt follows from theorems 3 and 12 that
abOIM = GhfLM = i2M 3 g* (—m) b*(— M +m) X(L, M, L,, L,, m)

= 23 0% (—m) B* (= M) X(L, —M, L, Ly, —m) (= 1)fr5o-s

= i2M g p*QOL, ~M( ] )LatLo=L, _ (87)

and EAOHIM — §~2M L, ~M — {~2M ;L ~M( _])Le+La=L, (88)
k% Ok LM

Hence [Gp,, || AaBb | CeDd]: = (Gmp,2 A% a* ¢ ”) 0" ( _1)rarmor s, (89)
B b* D d) i
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If the operator F is defined to be

F(a*(ml) b*(mz)) _ (Glzﬁlz

A*a*(m,) C*c(m4))
d(ms) = c(my) . ’

B b*(my) D d(ms)

(90)

it follows that F satisfies the first condition of theorem 17, part IV. It also follows that F
satisfies the second necessary condition, since

ab\ LM
F( ) . :(Glzl’lzpm

A% aC* c) oM
dc] GFM

Dd Bb ) g*im
= 0(L', L) 8(M', M) qi(/ M). (91)

Hence theorem 17, part IV, can be applied to the function F to change the coupling from
ab0, dcl to adf, bef. If this transformation is combined with a change of order of b¢f coupling
to ¢cbf and P, inserted with corresponding change in the serial order of Dd and Cc, the
statement of the theorem is obtained.

TueoreM 17. The fundamental two-electron integrals for atoms can be expressed

[1/r,,|| AauBbp | CouDdu]™ = 8(S, 0) Q(ab | cd| L) [A*B | C*D]E,
[—Prajri | AauBbye | CouDd]1 = 3 Q(ab | ad | LK) [4*D | C*BI~, } (92)
) K
where Q(ab | cd| L) = —2J%, JL;;
I, L
Q(ab | cd| LK) = W(L: ’ LK) JE JK. (93)

where JL, and [ f | g]* are defined as in theorem (15).

Proof. This assertion is merely a combination of the results of previous theorems. The
given integrals must first be expressed as products of an L integral and an \§ integral, the
values of the latter being —2 and —1 respectively by theorem 13. The expression for the
first L integral is given directly by theorem 15. The second is obtained by putting —P,,/r,
for G,,p,, in theorem 16, which gives a linear combination of integrals of the first type as
aresult. (L,+ L,— L) can be taken as even, since the resulting terms vanish if this is not so.

ComMenT. The above analysis expresses all the two-electron integrals required for atoms
in terms of integrals of the radial factors of the single-electron functions and in terms of the
Q coefficients. The @ coefficients are defined in terms of other quantities, but since only
comparatively few are required, these will be tabulated and used as numerical data. The
wisdom of this is illustrated by the fact that for extensive calculations on atomic states, up
to those of 3p shell, only fifty such coeflicients have been used. No general formula for the
radial integrals can be given, since these might involve very different types of functions in
different applications. However, for the case of the polynomial exponential functions
which are used in the accompanying numerical investigations general formulas can be
obtained and have been given in part II. Formulas for the corresponding single-electron
functions are also given there, so that the analysis of this section has reduced the evaluation
of all the fundamental integrals required for converging calculations of atomic wave
functions to comparatively simple and stereotyped procedures.
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ELECTRONIC WAVE FUNCTIONS. VI 109
6. THE SYMMETRY PROPERTIES OF THE V COEFFICIENTS
It will now be shown that VE.s = Vi, (94)

is satisfied by the coefficients which were defined in part IV in order to expand the density
kernels of pairs of connected sets of eigangs such as 4 and B and thus to formulate the
reduction of complicated integrals. This result shows that it is not necessary to pay attention
to the order in which the initial pair of functions occurs, and also that it is only necessary
to tabulate half of the possible coefficients. The result is established by two theorems, the
first of which contains the main content of the analysis.

TueoreMm 18. If the V coefficients are defined for integral values of a—b to satisfy

C\Geotr A4
B( C)%c A0 Viablelef| L), (95)
then Viable|ef|L) = Vibale| fe|L),  (96)
where a, b, ¢ are the first eigang values of the connected sets 4, B, C and ¢, f of the vector

couplings. 4
Proof. Tt follows from the change of coupling properties shown earlier and the definition
of the a® quantities that

ACO™M = g (M) A*C*6L M
= g(M) > A*(m) C*(—M—m) X(L, — M, a,c, m)

= EZ(——m) U(M+m) X(L, M,¢c,a, M+m)

= ACOLY. (97)

Let 4,, B,, C,, C, be any connected sets of eigangs with first values g, b, ¢. Let the coeffi-
cients J be defined to satisfy

C,4,6°B,C,070™ = ¥ J(I,m,my,my) A, B, 0"C\(m,) C(m,) o(—m,), (98)

l,m, m, me
an expansion which is always possible since any uncoupled term could be expressed as
such a linear combination. Then since

(IIC(my) C(my)) = o(my) 8(—m,y,m,) (99)

by the meaning of these notations, it follows that the straightforward evaluation of the V'
coefficient by expansion of the first couplings in the theorem, followed by integration and
identification of 4 with 4,, C with C|, etc., yields

V(a,blcle,flL) =ZJ(L,M,m, ‘"m) (100)
Similarly, if J" are defined by " .
C,Bi074,C,0¢0"™ = ¥ J'(l,m,my, my) B, 4,0"Cy(m,) C(m,) 0(—m,),  (101)

lym, m,mg
then Vib,a|c|fie|L) =3 J (L, M,m, —m). (102)
However, it follows that "
C, 46°BC,070™ = C, BOTAC, 6°0" Mo (a+b+2c— L)
= > o(2c—L+41—my+my) J'(I,mym, my) ABI™C\(my) Cy(m,) o(—my)-
i (103)
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110 S. F. BOYS ON
Hence  Via,b|c|e, f|L) =3 0(2c+2m)J' (L, M, —m,m) = V(b,a|c|f,¢|L), (104)
since ¢-+m must be integral. "

TreOREM 19. If P and @ denote conventional vector-coupled antisymmétric functions
constructed from single electron eigangs x,, and the V coefficients are defined by the density
kernel expansion,

R(4, ) PQlrg(L, M, S, U) = 3 VE, 5,(8) 5,(¢) 0, (L, M, S, U), (105)

rs

then VESs = Ve, (106)

Proof. Consider the calculation of the ¥y, and ¥, coeflicients according to the reduction
method of § 5, part V. Itis then apparent that the coeflicients at every stage of the reduction
have the same values for both PQ and @P cases. First, if the order of the coupling has to be
altered and @ expressed by means of U coeflicients as a linear combination of @; the U’s
are real, and the same for ¢ and @*. The /5, which enable a"¢ functions to be expanded in
terms of ¢"~1¢ functions, are also real and the same expansion results in both cases. Finally,
the elementary V coefficients were shown to be independent of this ordering by the preceding
theorem.

Discusston. It is useful to note that the result of this analysis, together with those on W
and @ coefficients, shows that all the W, V, @ coefficients used in the analysis of (¢ | H|¢)
have exactly the same numerical values of those used in the analysis of (¥’ | H|¢). This
means that in all tabulations of these quantities only the combination ¥, ¢, or its equi-
valent, need be entered, independently of the order.

7. A SHORT EVALUATION OF CERTAIN INVARIANT PORTIONS OF SCHRODINGER INTEGRALS

Since a general method of reducing all Schrédinger integrals to one- and two-electron
integrals has been given, there is no logical necessity for any addition to this. However,
arelation will be derived below which makes it possible to write down a considerable portion
of many such integrals merely by inspection. The relation makes it possible to write down
the (A|K|B), (4| V|B), [A*B| C*D]° and some other special terms by inspection. The
remaining [A*B | C*D]* expressions will require the general theory, but frequently only
for lower-order integrals. The method is not applicable to all integrals, but is sufficiently
widely so that the labour of integral evaluation is reduced to about a quarter of what it
would be otherwise. Formulas which correspond to a very special case, special symmetric
integrals, of the following relation have been known before (see Condon & Shortley 1933,
p. 182), but the use of these would only effect a very much smaller saving than the relation
given below.

It appears most useful to state the definitions and theorems in the general form applying
to the sectioned co-detors introduced in part ITI. They are then applicable to certain mole-
cular calculations as well as for the present atomic requirements. It is, however, worth
noting that for application to atoms the general classes of elementary functions x, will be
just the connected sets of eigangs of the form Aay, etc. For example, if

¥ = oA sA2S 15 B2S1p 43!


http://rsta.royalsocietypublishing.org/

A A

j A Y

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

' \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ELECTRONIC WAVE FUNCTIONS. VI 111

it would be convenient to take x; = s4, x, = sB, x; = pA, when the n, would have the values
n, = 2, n, = 2, ny = 4. In such cases the m suffix of the following definition and theorem
would have to take values corresponding to all pairs of values of the ordinary eigang suffixes
m and u.

DEeFiNtTION. Let %, (r=1,2,...) denote various classes of orthonormal single-electron
functions. Let ¢ and ¥’ denote two co-detors constructed from these elementary‘functions
with configuration n, and n, respectively. Then a row of symbols y,, y,, 5 written above a
corresponding row y, ¥, ... will be called a correspondence of ¢, ¥ when

(i) each y is one of the symbols x,,
(ii) n, of the y, are equal to xy, 7, to x,, etc., and 7] of the y to 1y, 1y to #,, etc.,
(iii) there are as many x, symbols under x; symbols, x, under x,, etc., as possible, and the
first pair with y, =y}, consists of the first x, for which n,>n, over the first x, for which n,<n,.

Let 3 J;+ % G;; be some symmetric operator for which

[ l15,5,] = (] 7 s} = d(my, ms) qe(jmy), (o)

xf (my)
x.s‘(mZ)
w7 (my) 7 (ms)
xy(mg) x,(ms)
where m,, etc., label the different members of the classes x, and the short notations on the

left-hand side will be used subsequently.
Then the invariant is defined to be

(inv||yy’) = % [J l7,75] Uk+k§1 (Gl Y4y ,ylyi] Tga (109)

(G35 | 2] = (G ) = 8oy, my | oy ) qt(Jmy, m), (108)

where g, = 0 if there is any other pairy,, =y, with k==m, and o}, = 0 if there is a pair g, ¥,
with k==m==1I, but otherwise ¢, and 0y, are unity. Any integral [J || xx] or [G || xx | xx] which
does not occur in the invariant will be called a variant integral.
TueEOREM 20. If ¥, ¥’ and 3 J;+ X G,; = F satisfy the invariant conditions, then
i i>j

(F||yy’) = C(inv || ¥y¥") +variant integrals, (110)

where C is a constant, and C = (¥ | ¥’) when ¢ = ¢'.-
Proof. Let ¢ be expressed as a linear combination of serial products of which

J=z1(t) z5(ts) 25(t5) --- 2 () - (111)

denotes a typical term. Letj’ and z, be related similarly to §’. Let j’ be written below j.
Consider the case when the vertical pairs in j,j are exactly the same as those in the ¥, ¥’
correspondence pattern, the order of occurrence of the pairs being ignored. Consider first
the special case of this when the m value of each z, is the same as that of z, that is, that the
number labels of the functions within the x, classes are the same in each vertical pair. Then
any such (F|jj’) is equal to the invariant, since any vertical pair z;, z will give an integral
[J || z,2;] by the operator J, provided that there is no other pair z,#z;, in which case multi-
plication by this orthogonality integral would give zero. The corresponding G integrals will
be similarly obtained. In the other subcase when j, ;" have the correspondence pattern but

Vor. 245. A. 14
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there is some my ==my, it follows that (F||jj') = 0, since each factor integral containing z,, z,
will be zero whether these occur in a J, G, or orthogonality integral.

Consider now the case when a particular integral, say [J| ¥, 2], occurs in both the
invariant and in any given (F||j;’). Then there must be the x,z’ pair in both j, ;" and the
correspondence patterns, and there must be n, — 1 pairs (x,, ¥;), n, pairs (x,, %,), and so on,
in both. Hence j, ;" and the correspondence pattern must be the same. The same deduction
holds if a G integral is common to both. Hence all j, ;' pairs without the correspondence
pattern contain only variant integrals. However, (F| ¢¢’) is a linear combination of
(F||j5") integrals and so can only be a multiple of the invariant plus variant integrals. The
coefficient (¥ | ') follows in the case ¥ = ¥’ since the (F||jj’) integrals equal to the invariant
are those with j = j" and it is apparent that if

¥ =3 Cul (112)
then (Fllyy') = kZCk C¥(inv || ¢y’) + variants (113)
and W1y =2 C.CE. (114)

THEOREM 21.

(ﬁv 7o)

2,9
nr;

A*a*(m,) p* (u,) C*c*(my) ﬂ*(us))
Bb(ms) u(u,) Dd(m,) u(u,)
= 8(Laa L, my,up,my,ug | L,, L;, my, uyymy, uy) [4*B | C*D]°. (115)

Proof. Since {r,,7,}°/r?r3 commutes with L,, S}, L,, S, it follows that the integral vanishes
if L,+L,, etc., giving all the necessary equalities shown in the §. When these conditions are
satisfied it follows that [a(m) | b(m)] = 1, since a and b then denote the same spherical har-
monic. Finally, the radial integral denoted by [4*B | C*D]° is the only residual factor if
the integration is performed as usual in polar co-ordinates.

DEerinITION. It is very convenient to use a notation

id[AB | CD] = [AB| CD]°+3 Q(ab | cd | 0K) [AD | CBIX/Q(ab |cd|0).  (116)

DEerintTION. The Schrodinger Hamiltonian can be written

H=3J+36,+3 § 3 Uellisug, g (s, 4%, (117)
i>j L=1M=-Li>j nr i
where Gy = (1101212

The invariant of (| ¥ J;43 G;; | ") will be called the primary Schrédinger invariant.
i i>j

However, it is very convenient to define a more complicated function as the fundamental
or secondary Schrédinger invariant. This is derived from the primary invariant by replacing
certain of the [G||x,x, | x,x,] or [,x, | %,x,]° as they were shown to be by theorem 21 by the
corresponding id[x,x, | ,x,] according to the following conditions. If y and ¥’ contain
respectively component functions 7 and 5" which (i) depend on the same numbers of vari-
ables, (ii) have L = § = 0, (iii) depend only on some sets x, which do not otherwise occur
in ;ﬁ and ¥, then all the [x,x, | x,x,]° for which either x,, , or , x,, but not both, belong to

r> s

7, 7’ must be replaced by id[x,x, | x,x,]. There may be different pairs 7, 7’ of this type in a
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given ¥, ', and if the conditions hold with respect to any such pair the replacement must
be made.

It must be noted that any integrals which do not occur in an invariant expression when
all 7d terms are written out in full will be designated as variant terms, and so these will
actually be different for the primary or secondary invariants.

It must not be assumed that the extra terms of the secondary invariant arise just from the
extra terms of H. They come partly from thisand partly from thevarianttermsof 3 J;+ ¥ G;;.

i i>j
THEOREM 22. Ify and §’ are conventional vector-coupled functions, then, if inv denotes
either Schrédinger invariant, it follows that

(¢ |H|y') = C(inv || y¢") 4 variant terms, (118)

where C is a constant equal to 1 when ¢ = ¢,
Proof. Tt follows from the two preceding theorems that

|2 Ji+2 G, |¢') = C(JG invariant ||y ') + variant terms, (119)
i i>j

where this invariant consists of the [J | x,x,] and [4*B | C*D]° appropriate to the corre-
spondence pattern. If the extra terms {r, 7;}¢/r{r§ with L0 are included to give the com-
plete Schrédinger Hamiltonian, the extra integrals are all of the types [4*B | C*D]* and
hence only contribute to the variant terms so that

(v |H|¢') = C(JG invariant || y¢") 4 variant terms. (120)

Now consider the evaluation of the given integral by means of the general analysis
developed in parts III, IV and V, and in particular the central VISVISWLIVS expansion.
For any case where two groups 7 and 5’ with L = § = 0 are coupled vertically, only one term
with L = § = 0 occurs in the expansion and so only terms of the type

[(1=Pyy)fris || 2,5, | %%,]% = Qd[x, %, | x:%.] (121)

can occur between these 7, 7’ groups and the other parts of ¢ and ¥’. Hence the integrals
concerned can only occur in the id combination. Since the coeflicient of the first integral
of the id is just that of the primary invariant, the coefficients of the other integrals are
similarly fixed. Hence the theorem holds as stated, since when these terms are included in
the invariant they are no longer to be considered as variant terms by the definition.

CoMmMENT. In order to illustrate the practical use of the invariant the details of three
examples which have been calculated for the ground state of an F atom will be given. Let

§1 — LSS BS pASS pBIPIPY,
B, = A sA2S'sBsCS! pA3S* p B?P3P2, (122)
By = AsA281sBsCS! pA*P3 pBP2,

where &7 denotes all the antisymmetric w operators included in conventional vector-coupled
functions. It will be assumed that the radial factors of the functions s4, sB, etc., are all real,
since it is always convenient to make them so in practice. The above functions illustrate the

convenience of using the modified spectroscopic notation of S* instead of S as mentioned
14-2
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114 S. F. BOYS ON
in §2. Let [sAsB] denote (s4|—4V2—Z/r|sB), and inv the fundamental Schrédinger

invariant, when it follows by application of the last theorem that
(¢, |inv | ¢,) = 2[sAsA]+2[sBsB] + 3[ pApA] +2[ pBpB] + [sAsA | sAsA]° )
+[sBsB | sBsB]°+-3[ pApA | pApA)°+ [ pBpB | pBpB]°
+4id[sAsA | sBsB] + 6id[sAsd | pApA] + 4id[sAsA | pBpB]
+61d[sBsB | pApA] +4id[sBsB | pBpB] + 6[ pApA| pBpB]°, L (123)
(¢, |inv | @,) = [sBsC]+ [sBsC | sBsB]°+ 2id[sBsC | sAsA]
+ 3id[sBsC | pApA] + 2id[sBsC | pBpB],
(61 |inv | 43) = id[sBsC' | pApB]. )
It follows by the reduction theorems as specified in part V, and the fact that only the
variant terms, denoted var, need be calculated, that

($11 H| $) = (4, | inv ) + (s4°8! | var | sAPSY) + (sB*S' | var | sB2S)) ~
+ (pA3S*pB*P3P? | var | pA3S*p B2P3P?)
= (¢1|inv | 1) —3[pApd | pAp A —4{ pBpB| pBpBI*+3[pApB | pBpA]°
+15[p4pB | pBpA], (124)
(411 H|§:) = C(g, | inv | ¢y) + (sB*S! | var | sBsCSY)
=2 (¢, |inv | g,),
(@1 | H | $5) = C(8,|inv | ¢g) = (4//3) (¢, | inv | 4;). J
From these examples it should be appreciated how the use of the invariant enables so
many of the simpler terms in actual integrals to be written down by inspection, and leaves
a smaller number of difficult terms to be evaluated by the general reduction theory. This,

however, does not apply at all to a small proportion of integrals in which the functions are
very differently vector coupled.

8. Discussion

The preceding analysis completes the general basic theory which it is simplest to present
before the description of the numerical calculations to be given in the following parts.
The whole analytical scheme provides methods of expressing any Schrédinger integral
required for a poly-detor variational treatment of any atom as a linear combination of
two-electron radial integrals with coefficients determined by stereotyped procedures. It is,
of course, equally applicable to the Schrédinger integrals required for less general calcula-
tions on atomic spectra. The scheme contains more relations than are necessary, since these
reduce numerical calculation and tabulation and provide a powerful short method for
a special, but wide, class of integrals. This latter method, derived in § 7, effectively evaluates
the terms of the integrals which might be regarded as corresponding to the associated
non-antisymmetric functions without vector coupling. The residual terms require the
general theory, but fortunately are much fewer in number.

The other important part of the scheme developed above is a method of evaluating all
the electrostatic integrals dependent on spherical harmonics, and provides a more systematic
method than known previously.
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In practice this scheme has proved even more serviceable than was expected, and pro-
bably considerably more than appears from the general theory. By its method it appears
quite feasible to tabulate the formulas for all the Schrédinger integrals required for the
lower states of all existent atoms for calculations of an accuracy superior to that of the
Hartree-Fock solutions.

The author wishes to thank the University of London for the award of an Imperial
Chemical Industries Fellowship at Imperial College, during the tenure of which the first
formulations of the above theorems were derived.
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